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SUMMARY

The phenomenon of viscous fluid buckling has a long and distinguished history, dating back to Taylor
(1968). This paper is concerned with demonstrating that a numerical method, GENSMAC, is capable of
simulating this physical instability. A table of the parameter values (e.g. the Reynolds number, the
Froude number, inlet width, inlet velocity and aspect ratio) is provided giving details of when buckling
occurs and when it does not. This allows the deduction of a possible buckling condition in terms of the
Reynolds number and the ratio of height of the jet to the inlet width, modifying a previous hypothesis.
Visualization of jet buckling is provided. This work has been motivated by the need of industry to
understand jet filling of containers; jet buckling can lead to air entrapment and this is undesirable.
Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In 1744, Euler determined the critical load for elastic buckling of a slender column. He found
that buckling occurred when l2R\p2B, where R is the axial compressive stress or load, B is
the flexural rigidity and l is the length of the column. A similar buckling phenomenon is also
known to exist for fluids and as yet, no similar satisfactory mathematical theory exists to
describe the phenomenon. It manifests itself by the coiling or folding of a thin stream onto a
flat plate just as honey does ‘falling’ from a spoon. This paper is concerned with a modest
contribution to this problem: a critical stability region specifying when the fluid jet will buckle
has been found through extensive numerical experimentation.

Taylor [1] was the first to study this phenomenon. Then followed a number of related
papers, e.g. Lienhard [2], Suleiman and Munson [3], before an extensive experimental examina-
tion of jet buckling was carried out by Cruickshank [4]—see also Cruickshank and Munson
[5]. Approximate mathematical models have been developed by Cruickshank [6] and Tchav-
darov et al. [7] and have been shown not to compare too badly with experiments. An
exhaustive bibliography can be found in the review article by Bejan [8].

The viscous jet may be either in tension or compression, depending on the velocity gradient
along its axis (Cruickshank and Munson [5]). If the diameter of the jet increases in the

* Correspondence to: Department of Mathematics, University of Strathclyde, 26 Richmond Street, Livingstone Tower,
Glasgow G1 1XH, UK.

CCC 0271–2091/99/060705–14$17.50
Copyright © 1999 John Wiley & Sons, Ltd.

Recei6ed July 1995
Re6ised October 1997



M.F. TOME AND S. McKEE706

downstream direction, the viscous normal stress along its axis is one of compression. If this viscous
compressive component of the normal stress is large enough, the net axial stress in the jet may
be compressive. Thus, near the flat plate, sufficiently large axial compressive stresses, along with
a sufficiently ‘slender’ jet, combine under appropriate circumstances to produce the fluid
mechanics analog to the elastic buckling of a slender solid column.

The motivation for this work came from the authors’ involvement with a large food processing
company. One of the problems associated with the jet filling of containers is air entrapment and
this may occur during jet buckling. Thus, the purpose of this paper is first to demonstrate that,
by solving the two-dimensional time-dependent Navier–Stokes equations, this buckling phe-
nomenon—a non-linear physical instability—can be simulated; and secondly, to provide a table
of parameter values of the system for when buckling occurs and when it does not. This table
then allows the deduction of a relationship between the Reynolds number and the ratio of the
height of the jet and the inlet width for which buckling will or will not occur. This modifies
a hypothesis of Cruickshank [6], which he arrived at through experimentation and a one-dimen-
sional stability analysis. An extensive experimental program has already been carried out to
validate the code and this is reported in Barrat et al. [13].

This paper only describes the essential steps of the numerical method; details of the methodology
employed can be found in Tome [9] and Tome and McKee [10].

2. BRIEF DESCRIPTION OF THE GENSMAC CODE

The GENSMAC code solves the two-dimensional time-dependent Navier–Stokes equations for
an incompressible viscous fluid. It is an updated version of the SMAC (simplified marker and
cell) method (Amsden and Harlow [11]) for calculating time-dependent free-surface flow problems
employing pressure and velocity as the primary dependent variables. It employs a finite difference
approach on a staggered grid. An adaptive time stepping technique (see [10]) has been used and
a conjugate gradient solver is employed to invert the discrete Poisson equation. The code is
designed to deal with free-surface flows within a general domain with free-slip or no-slip rigid
boundaries. A number of inflows and outflows can be handled, as can any number of internal
obstacles.

2.1. Basic equations

The basic equations are the two-dimensional time-dependent Navier–Stokes equations together
with the mass conservation equation, which in non-dimensional form can be written as:
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where Re=UL/n and Fr=U/
Lg are the associated Reynolds number and Froude number
respectively. U and L are typical velocity and length scales and n is the kinematic viscosity, g
is the gravitational constant with g= (gx, gy)T the unit gravitational field vector, u= (u, 6)T are
the non-dimensional components of velocity, while p is the non-dimensional pressure per unit
density.
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2.2. Solution procedure

The solution procedure is based on the sequential solution at each time step of an explicit
discretization of the Navier–Stokes equations followed by a discretized Poisson equation for
a corrected velocity potential, c. Solving the Navier–Stokes equations for ũ(x, t), say with the
correct boundary conditions, creates the correct vorticity, but mass is not conserved. This is
achieved by writing

u(x, t)= ũ(x, t)−9c,

so that 9 ·u(x, t)=0 whenever

92c=9 · ũ(x, t).

It is supposed that at a given time t0, the velocity field u(x, t0) is known and boundary
conditions for velocity and pressure are given. The updated velocity field u(x, t) at t= t0+dt
is calculated as follows:

1. Let p̃(x, t0) be a pressure field that satisfies the correct pressure condition on the free surface.
2. Calculate the intermediate velocity field ũ(x, t) from the explicit discretized form of
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where u(x, t0)= (u, 6)T using the correct boundary conditions for u(x, t0).
3. Solve the Poisson equation

92c=9 · ũ(x, t). (6)

4. Compute the velocity

u(x, t)= ũ(x, t)−9c.

5. Compute the pressure

p= p̃+
c

dt
.

As the time integration of the intermediate velocity field is performed by an explicit method,
the local truncation error is O(dt). It is well-known that for this scheme to be stable, certain
time stepping restrictions need to be satisfied [10]. This can lead to small time steps (of the order
of 10−5), although these are to some extent mitigated by the automatic time stepping routine.
In designing this code, the authors primarily sought robustness with respect to a wide range of
Reynolds numbers; in addition, to maintain accuracy, the mesh spacings chosen were often
small (a grid of 100×100 was employed throughout this paper). Consequently, computing
times can be large with some of the runs taking 20 h on a Dec alpha 600.

2.3. Boundary conditions

There are several types of conditions that can be applied at the boundary, namely: no-slip,
free-slip, prescribed inflow, prescribed and continuative outflow. For a detailed discussion see
[9]. The appropriate boundary condition for the Poisson equation (Amsden and Harlow [11])
is
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on the mesh boundary and c=0 on the free-surface. The free-surface boundary conditions
are the vanishing of the normal and tangential stresses, which can be expressed as [12]:
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respectively, where n and m are the normal and tangential direction cosines to the surface
respectively. These conditions are applied by making local finite difference approximations
on the free-surface [10].

2.4. Marker particles

Marker particles are used to represent the fluid itself. Their essential task is to provide the
position of the moving free-surface so that the stress conditions can be applied accurately.
They are updated at the end of each calculational time step so as to provide the dynamics of
the fluid motion.

The new particle co-ordinates are found by solving

dx
dt

=u and
dy
dt

=6

using Euler’s method. Thus, after the velocity field is updated, the particles are moved
according to

xp
n+1=xp

n+updtn+1,

yp
n+1=yp

n+6pdtn+1,

where (xp
n, yp

n) is the current particle position, dtn+1 is the actual time step employed and
(xp

n+1, yp
n+1) is the particle’s updated position.

The velocities up and 6p are found from a bilinear approximation using the four nearest u
and 6 velocities.

3. JET BUCKLING: A NUMERICAL EXPERIMENT

The experimental results of Cruickshank and Munson [5] suggest that buckling will occur when
the Reynolds number (Re) averages about 0.56 or less. A pertubation analysis of Cruickshank
[6] suggests that the condition for buckling is given by

H/D= (2n+1)p (n=0, 1, . . . ),

where D and H are the slit width and the height of the inlet to the plate respectively.
Experimental evidence, provided by Cruickshank and Munson [5], then leads Cruickshank [6]
to suggest that buckling of a planar jet appears to occur when n=1, i.e. when H/D is greater
than 3p. Thus, from their experimental results, they deduced that buckling will probably occur
when the Reynolds number is less than 0.56 and the ratio H/D is greater than 10.

Based on these assumptions, a series of runs were performed using the GENSMAC code in
order to make a comparison with experimental results. The following numerical experiment
was carried out.
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An empty rectangular cavity with the no-slip condition imposed on its walls is considered.
Through an inlet, a thin jet of fluid is injected into the cavity at a constant velocity. The cavity
is chosen to be sufficiently wide to permit buckling without the jet touching the cavity walls.
The geometry of the experiment is shown in Figure 1, where again D is the inlet size and H
is the height of inlet jet from the bottom wall of the cavity. The values of H, inlet size D, inlet
velocity U and the kinematic viscosity n, assume several values within the runs. The following
data were employed:

D=3, 4, 5 mm, U=0.5, 1.0 m s−1, n=0.005, 0.010, 0.020 m2 s−1.

These gave Reynolds numbers Re, based on the slit width, in the range of [0.075, 1.0] and
Froude numbers Fr in the range [2.258, 5.829]. The height H was in the range [3.0, 24.0] cm,
in which case the ratio H/D took values in the range [9.0, 80.0]. A selection of the results is
displayed in Table I. Figure 2 displays a particular buckling obtained for the data H/D=12.5,
D=4 mm, U=0.5 m s−1 and n=0.010 m2 s−1 (Re=0.20, Fr=2.524). Results for a jet that
shows no signs of buckling are displayed in Figure 3, for the data H/D=11.0, D=4 mm,
U=0.5 m s−1 and n=0.005 m2 s−1 (Re=0.4, Fr=2.524).

Table I sets out the results of a selected number of the simulations performed. It is clear that
the Reynolds number is an important factor in the buckling phenomenon. Note that for
Re\0.60 (more detailed runs, not displayed here, suggest Re\0.56) buckling does not occur.
However, for aspect rations of around 10 and Re=0.50, buckling also does not occur, but
does occur as the aspect ratio is increased, suggesting that the aspect ratio is also significant.
To emphasize this point, runs were performed with the following data: H/D=10, D=5 mm,
U=1.0 m s−1 n=0.010 m2 s−1, giving Re=0.50 and Fr=4.515; and H/D=10, D=5 mm,
U=0.5 m s−1, n=0.010 m2 s−1 giving Re=0.25 and Fr=2.258. Buckling did not occur in
both cases. However, re-runs with H/D equal to 14.0 and 16.0 respectively, did display
buckling; the results for the latter are displayed in Figure 4. There are small, but essential
differences between the two runs displayed in Figures 2 and 4. Both initially display a small
amount of jet thinning, although this is more pronounced in the run shown in Figure 4,
possibly due to the smaller Froude number. After the jet has impacted on the surface, Figure
2 more clearly displays jet thickening; this moves back up the jet prior to buckling. This effect
was reported by Cruickshank and Munson [5]. Finally, Figure 4 shows the fluid buckling to
the right, whereas in Figure 2, the fluid buckles to the left. This confirms the authors intuition:
as with the elastic buckling of a slender rod, the fluid has no propensity to buckle in any
preferred direction. This, therefore, verifies that the code is working properly, containing no
spurious asymmetric features.

Figure 1. The geometry of the experiment.
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Figure 2. Buckling jet (Re=0.20, Fr=2.524, H/D=12.5); t=6.250, 15.625, 28.125, 37.500, 43.750, 50.000, 56.250,
62.500, 68.750, 75.000, 81.250, 87.500.
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Figure 2 (Continued)

Following Cruickshank, it would appear that buckling is primarily dependent on the
Reynolds number and the ratio of the height of the jet to the inlet width. A plot, Graph 1, has
therefore been made in the (Re, H/D) parameter space of those points which produced
buckling (�) and those that did not (�).

Graph 1. �—Non-buckling points; �—Buckling points.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 705–718 (1999)
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Figure 3. Jet did not buckle (Re=0.40, Fr=2.524, H/D=11.0); t=7.812, 14.062, 21.875, 37.500, 45.312, 53.125,
60.937, 93.750.
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Table I

H/D D U n Re Fr Result
(m2 s−1)(m s−1)(mm)

10.0 3 0.50 0.010 0.15 2.915 B
0.50 0.010 0.15 2.9153 B16.6

10.0 3 1.00 0.010 0.30 2.829 nB
B5.8290.300.0101.00311.0
B5.8290.300.0101.00313.0

15.0 3 1.00 0.010 0.30 5.829 B
16.6 3 0.50 0.005 0.30 2.914 B

B5.8290.300.0101.00316.6
16.6 3 1.00 0.005 0.60 5.829 nB
10.0 4 0.50 0.020 0.10 2.524 B

B11.0 4 2.5240.50 0.010 0.20
B0.0100.50412.5 0.20 2.524

4 0.50 0.005 0.4010.0 2.524 nB
11.0 4 0.50 nB0.005 0.40 2.524

B2.5240.400.0050.50412.5
2.5240.400.005 B0.50413.0

15.0 4 0.50 0.005 0.40 2.524 B
12.5 4 1.00 nB0.005 0.80 5.048

9.0 5 0.50 0.025 0.10 2.258 B
B12.0 5 4.5151.00 0.033 0.15

10.0 0.025 0.20 4.515 B1.005
0.50 0.010 0.25 2.25810.0 nB5

B12.0 5 0.50 0.010 0.25 2.258
B2.2580.250.0100.50514.0
nB4.5150.500.0101.00510.0

12.0 5 0.50 0.005 0.50 2.258 nB
14.0 5 1.00 0.010 0.50 nB4.515

B4.5150.500.0101.00516.0
40.0 5 1.00 0.010 0.50 B4.515
30.0 5 1.00 0.010 0.54 nB4.515

B40.0 5 1.00 0.009 0.54 4.515
640.0 1.00 4.5150.600.010 nB

B, jet buckled; nB, jet did not buckle.

Examination of the points in parameter space suggests that there is a critical stability curve
separating the two sets. Let the co-ordinates of the buckling points be denoted by {xi, yi},
i=1, . . . , N, where the aspect ratio H/D is identified as x and the Reynolds number as y. The
curve appears to asymptote at y=0.56. Bearing this in mind and the fact that it is
parabolic-like, it may be represented by

y2=
1
p

(xc−8.8c)
xc , (9)

where c is a constant to be determined. This curve will be fitted between the ‘buckling’ and the
‘non-buckling’ points. The reason for 1/
p is the fact that it appears that buckling can only
occur if Re50.56; 0.56 is approximately 1/
p. By using the software Mathematica, a value
of c=2.6 was found to produce a good fit through the points (see Graph 2). Formula (9) can
easily be used by a food processing engineer to avoid jet buckling in his container filling
system.
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Graph 2. Critical curve defining the buckling region.

3.1. Computational details

Most runs were performed with a dx=dy=1/2 mm. This gives a mesh size of 100×100 for
most runs reported in Table I. The non-dimensional time step size was restricted to

dtB
1
8

dx2

D
Re,

giving a time step size in the range of [3.130×10−4, 1.250×10−3]. The average number of
cycles for each of the runs was 100000 and the average CPU time taken was 5 h on a Dec
Alpha 600. The convergence criteria for the conjugate gradient routine was set to e=10−6 for
all the runs, and the number of iterations taken was usually 2 per cycle; occasionally, the
conjugate gradient method took over 10 iterations to satisfy the convergence criteria. Gravity
was assumed to act downwards with gy= −9.81 m s−2. The number of particles created at the
inlet was four particles for each cell. The visualization was provided by a graphic routine
written using the C language and X-windows system.

4. CONCLUDING REMARKS

This paper has been concerned with the use of the code GENSMAC to simulate the viscous
buckling of a planar transient jet, and thereby gain further insight into when a fluid jet will
buckle. Many runs were performed and a table was constructed displaying a selection of these
runs and showing when buckling will occur and when it will not. This in turn has allowed the
argument that there is a critical curve in Reynolds number/Aspect ratio space that defines when
buckling might be expected to occur and an approximate curve has been presented. In
particular, it was found out that buckling should occur when

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 705–718 (1999)
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Re25
1
p

((H/D)2.6−8.82.6)
(H/D)2.6 , (10)

modifying Cruickshank’s hypothesis. Although this represents a best fit of the points displayed
in Graph 2, it must be recalled that surface tension has not been included in the numerical
simulations, nor indeed has consideration been given to the Froude number (the Froude
number is clearly not dominant, but might play a small role in determining whether a jet
buckles). Therefore, Equation (10) must be regarded as approximate. Moreover, it is interest-
ing to recall that Euler’s stability analysis revealed that a strut would buckle when l2R\p2B.
Since the simulated jet buckling occurs for H/D\8.8 (which, to an engineering approxima-
tion, might be taken to be p2) and 0.56:1/
p (see Section 3), the stability condition could
be (with a little inspiration from Euler),

Figure 4. Buckling jet (Re=0.5, Fr=2.257, H/D=16.0); t=10.000, 15.000, 20.000, 25.000, 32.500, 35.000, 40.000,
45.000, 50.000, 60.000, 70.000, 75.000.
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Figure 4 (Continued)

Re25
1
p

�
1−

p4

(H/D)2

�
or, equivalently,

(H/D)2]
p4

(1−pRe2)
.

This result provides some, admittedly limited, insight into this problem, but is of real practical
value to the food processing engineer concerned with designing a container filling system.
However, the reason for studying this problem is arguably more important than this. This
problem has so far defied complete mathematical analysis of stability and it is to be hoped that
the small contribution given here may act as a guide, or at least a catalyst, to the theoretician.
Furthermore, jet buckling is an example of a physical instability; so is turbulence. It is just
conceivable that by studying the jet buckling phenomenon and numerical methods that are
capable of simulating it, some useful insight may be gleaned about turbulence and how it, and
in particular its onset, could be accurately simulated.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 705–718 (1999)
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Figure 4 (Continued)
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